EUV and X-Ray Metrology Opportunities for NIST

Potential NSLS-II Partnerships for Detector-Based X-Ray Radiometry

Rob Vest, NIST

NIST Proposal for Radiometry

• Expand our existing calibration capability into the x-ray region with sub-percent $(2-\sigma)$ uncertainty to realize the U.S. national scale of detector responsivity.

Current energy coverage: 5 eV to 250 eV

SURF III is a 380 MeV synchrotron, so the maximum photon energy is around 300 eV.

Proposed energy coverage: 5 eV to 20,000 eV

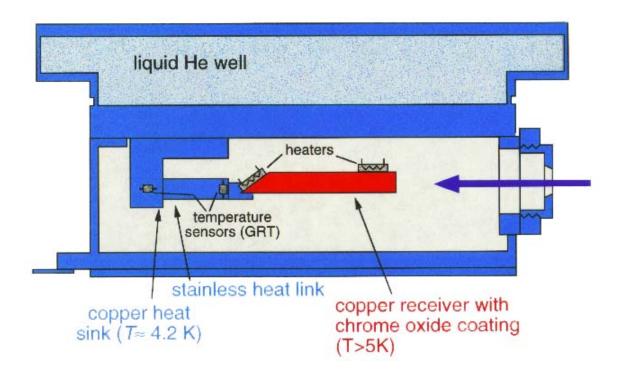
Calibration Chain

Absolute Detector: cryogenic radiometer, free air ionization chamber, etc.

Time-consuming, difficult transfer

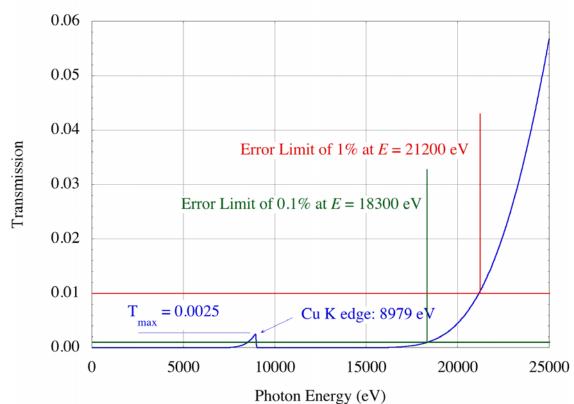
Working standard (e.g., Si photodiode) kept by NIST

Relatively easy transfer


Transfer standard (e.g., Si photodiode) issued to customer

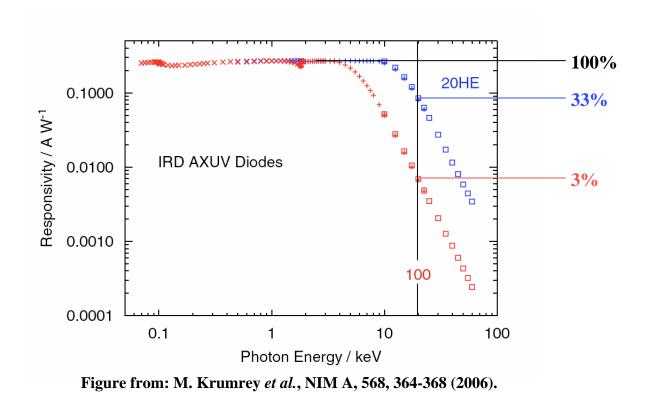
So Can This Work?

- ? Absolute detector useable up to 20 keV
- ? Standard detector useable up to 20 keV
- ? Source useable up to 20 keV


Cryogenic Radiometer

Calibration traceable to electrical standards

Cryogenic Radiometer



Calculated with effective thickness of 180 μ m. To reduce T_{max} to 0.001, need an effective thickness of 210 μ m, or 148 μ m at 45°.

- Transmission is
 <0.1% for energies
 below 18.3 keV
 - Except regionaround Cu K edgeat 9.0 keV
- Transmission is<1% for energiesbelow 21.2 keV

Si Photodiode

• Needs to be calibrated against cryogenic radiometer or other absolute detector.

Possible NSLS-II Sources

Couldn't scan or download the image last night, so no plot, but it's in your Summary handout on p. 5.

25-m Bend Magnet

- Critical energy: 2.4 keV
- / 0.1% to 8.5 keV

3-Pole Wiggler

- Critical energy: 6.0 keV
- Photon flux $>3x10^{12} / s$ Photon flux $>3x10^{12} / s$ / 0.1% to 20 keV

Yesterday's beamline development talk (J. Hill) envisioned a radiometry beamline on a 3-pole wiggler source.

So This Could Work

- ✓ Cryogenic radiometer useable up to 20 keV
- ✓ Standard detector useable up to 20 keV
- ✓ Source useable up to 20 keV

Radiometry Requirements

- Optical Power:
 - 1 μW current radiometer.
 - 10 nW with proposed low-noise radiometer.
- Energy Resolution: Currently 250 meV at 100 eV.
- <u>Beam Size</u>: A 4 mm by 4 mm spot is OK, but 1 mm² or slightly smaller is better.
 - Small (1 mm²) detectors
 - Spatial uniformity (homogeneity) mapping
- Coherence: No requirements.

More Radiometry Requirements

- <u>Polarization</u>: Linearly polarized source allows separation of s- and p-responsivities, but near normal incidence, this is not an issue. Circular polarization may eliminate the need for two calibrations for unpolarized source applications.
- <u>Beam Stability</u>: Unexpected step changes on the order of 1% is a problem. Slow (linear) beam current changes are easy to handle.
- Spectral Purity: Greater than 99% of power should be in-band.

NIST Role in JPSI?

- If JSPI develops an active detector program; and
- *If* a more collaborative or targeted scale dissemination method is desired;

• *Then* participation in JPSI may offer an alternative method of disseminating the NIST detector responsivity scale to NSLS users.

Final Comment

Because:

- Radiometry is not as "sexy" as nanotechnology
- Generally does not require the high brightness or fine energy resolution that is the *raison d'etre* for NSLS-II
- In the Beamline Advisory Team (BAT) and General User / Partner User (GU/PU) access model, we may need to convince NSLS to design and build a beamline.

Final Comment

Because:

- Radiometry is not as "sexy" as nanotechnology
- Generally does not require the high brightness or fine energy resolution that is the *raison d'etre* for NSLS-II
- In the Beamline Advisory Team (BAT) and General User / Partner User (GU/PU) access model, we may need to convince NSLS to design and build a beamline.

Be noisy or be forgotten!